VIMS HAB Report 2017

General Bloom Pattern in VA waters

Spring Summer Fall Winter

Diatoms

Heterocapsa triquetra

Pseudo-nitzschia spp.

Dinophysis spp.

Karlodinium veneficum Prorocentrum spp.

Raphidophytes

Margalefidinium (Cochlodinium) polykrikoides

Alexandrium monilatum- toxin = goniodomins

Notable Bloom Events 2017

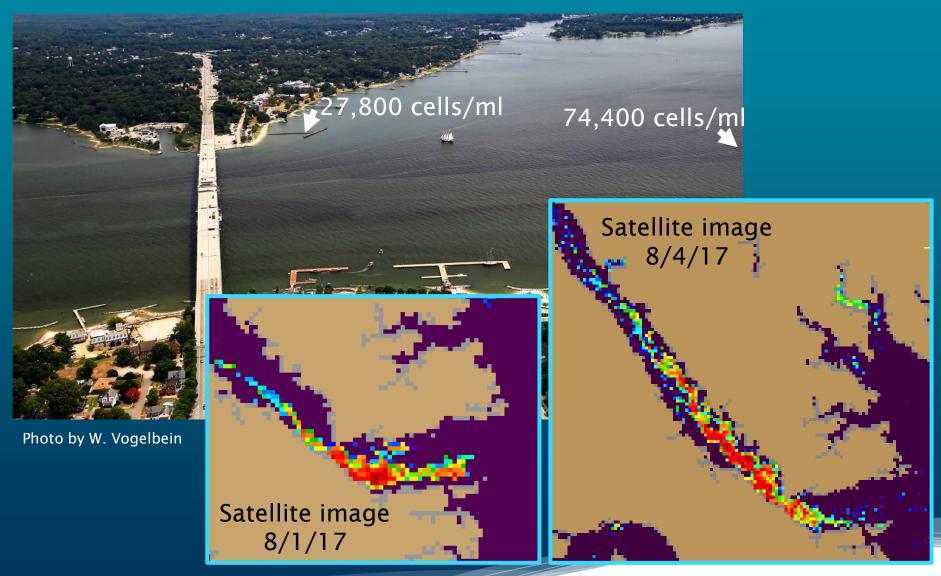
Date	Location	Species	Cell count (cells/ml)
Feb. 28	YR State Park	Heterocapsa triquetra	2,900
June 6 – July 7 (7/7)	Sarah's Creek, N Branch	Chattonella subsalsa	6,040 (peak)
June 13	Ingram Bay, GWR	Prorocentrum minimum	4,588
June 13	Locklies Creek, Rapp. R.	P. minimum	7,230
June 13	Gwynn's Island	P. minimum	1,442
June 14	Taskinas Creek, YR	P. minimum	3,892
June 28	Taskinas Creek, YR	P. minimum	2,147
June 30	Sarah's Creek, N Branch	C. subsalsa	1,173
July 5	Nassawadox Creek	C. subsalsa	1,039
July 6	York R. GP	P. minimum	1,631
July 7	Sarah's Creek, N Branch	C. subsalsa	5,728
July 11	Locklies Creek, Rapp. R.	P. minimum	1,029
July 27	Antipoison Creek	C. subsalsa	1,138
Aug. 2	Sarah's Creek, N Branch	C. subsalsa	4,402
Aug. 4	Sarah's Creek, N Branch	C. subsalsa	1.504
Sept. 22	Coan River	Copepods	

The Big Ones

Margalefidinium (Cochlodinium) polykrikoides

July 26 – Aug. 9 136,800 cells/ml (8/9/17)

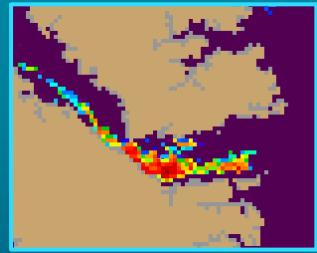
Alexandrium monilatum



July 27 – Sept. 5 340,000 cells/ml (8/22/17)

Margalefidinium polykrikoides – July 27, 2017

Alexandrium monilatum (~10X lower)


York River

Alexandrium monilatum - Aug. 17, 2017

Mouth of North River

York River Satellite image 8/17/17

York River

Aug. 17, 2017-South tributaries; species?

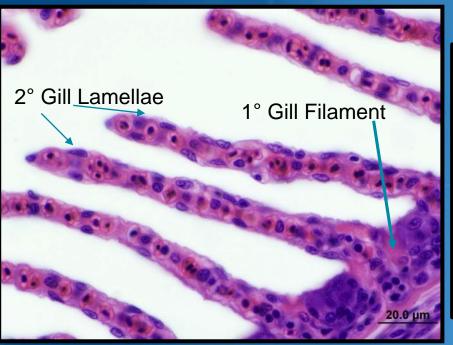
Aug. 31, 2017- A. monilatum

York River
Up to 168,352 cells/ml on 8/31/17

Bloom Impacts- Review of Previous Years?

2007 *A. monilatum* bloom: ~500 VIMS *Rapana* whelks die in tanks with York River flow-through water

2008 A. monilatum bloom: ~6 VIMS cownose rays die in sand filtered tank with York River water being fed oysters from the York River


Aquaculture Operations

Numerous years- mortality reported during blooms


- 2015: York River Region- oyster growers on the north side of the York reported extremely high mortality (>70-80% of juvenilesfall/winter harvest animals)
 - Higher mortality with inter-tidal vs. sub-tidal oysters

Laboratory Studies Fish Gill Tissues Histopathology

Normal Gill Pathology

Necrotic Gill Pathology Exposure to 4000 cells/ml *A. monilatum*

Impacts?

2016: NOAA NCCOS HAB Event Response Project

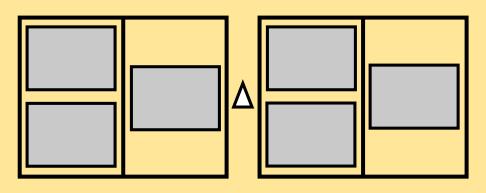
6 Week Field Study- 3 sites

Oysters deployed in aquaculture bags Intertidal and Sub-tidal

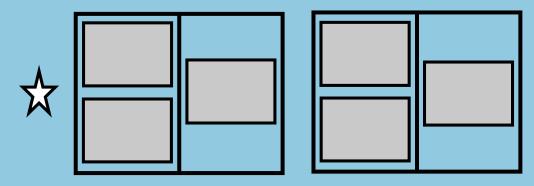
- Low energy site Perrin River- bloom
- High energy site York River- bloom
- Reference site- creek off the Rappahannock- low bloom

Results-low mortality overall

- Highest mortality was observed at the Perrin inter-tidal oysters
- Mortality at the other sites, both intertidal and subtidal was about half what was observed in the Perrin.

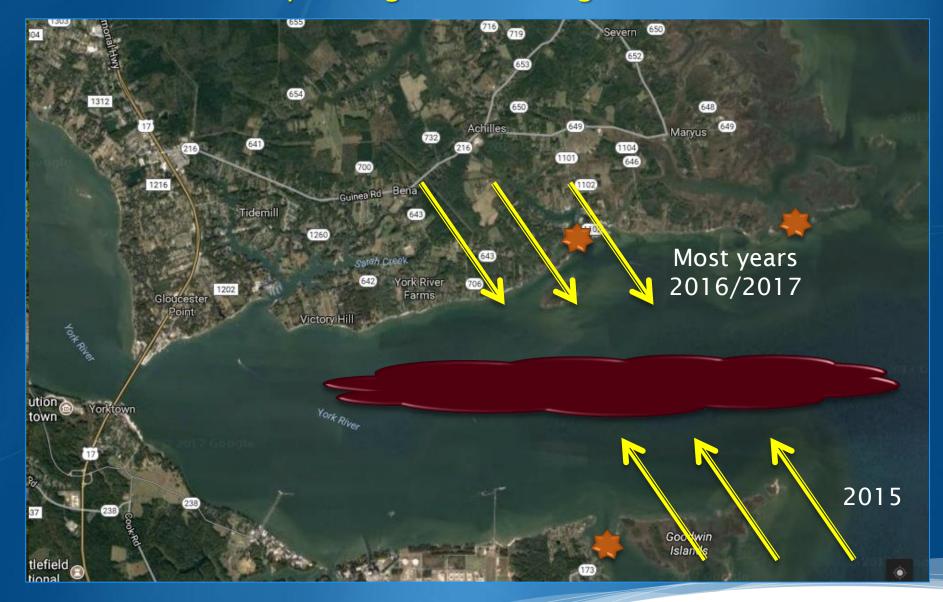

2017 Field Experiments Clara Robison VIMS Graduate Student

Experimental Sites
Perrin River - Low energy
York River - High energy
Reference
Ware River - Intermediate energy



INTERTIDAL

SUBTIDAL


Deployed: June

Deployed: July

HOBO: temperature and salinity
Sonde: temperature, salinity, dissolved oxygen, pH, chl a

North or South Shores of the York River Impacted More/Less Depending on Prevailing Winds

Summary

- Late summer bloom progression: M. polykrikoides consistently bloom peaks before A. monilatum peaks in lower Chesapeake Bay
- Historically, blooms seem to have expanded from York River region to throughout the lower bay.
- Satellite imagery is helping to guide sampling and identify bloom sites.
- A. monilatum cyst bed is now expanded throughout the lower bay.
- Oysters studies will continue at several sites in lower bay to examine impacts of stressors with focus on HABs, and using different grow-out techniques and sites. Goal-Provide aquaculturists with best strategies
- 2017 late summer blooms were of relatively short duration and of limited geographic range.

